
On Learning Paradigms for the 
Travelling Salesman Problem

Contributions
End-to-end learning for TSP
We unify recent ideas in learning for 
Combinatorial Problems through a generic 
end-to-end pipeline.

Zero-shot generalization
We design controlled experiments to study the 
impact of architecture and learning paradigms 
on solving TSP instances larger than those 
seen in training (when training on fixed sizes).
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Studying the end-to-end pipeline for TSP

What is needed for zero-shot generalization?

Graph Definition

Define TSP as a 
decision problem:

• Full graphs
• k-NN graphs

Graph Embedding

Obtain embeddings 
of nodes and edges:

• GCN/GAT
• Transformer
• Simple MLP

Solution Decoding

Assign probability to 
each node or edge:

• Autoregressive

• Non-autoregressive

Graph Search

Select feasible 
solution set:

• Greedy search
• Beam search
• Sampling

Policy Learning

Train prediction 
policy end-to-end:

• Supervised Learning 

• Reinf. Learning
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• Generalization, esp. 
to larger sizes, is 
difficult.

• Sparse graphs lead 
to faster learning.

• Modern GNNs do not 
have implicit scale-
invariance, i.e., 
cannot generalize 
zero-shot.

• Inductive bias: AR 
decoding generalizes 
better than NAR.

• Step-by-step AR is 
slower than NAR.

• Search/sampling is a 
trade-off between 
performance and 
inference time.

• SL overfits to specific 
graph sizes.

• Comparatively, RL 
generalizes better.

Fixed: Transformer, AR decoder, Sampling, RL Fixed: Full gr., AR decoder, Greedy search, RL Fixed: Full gr., GCN, Beam search, SL Fixed: Full gr., Transformer, AR decoder, RL Fixed: Full gr., Transformer, AR decoder, Greedy

Prediction heatmaps

Visualizing probability to be on TSP tour for 
each edge before performing graph search:

Visualizing poor generalization

Paper + Code

GNN-based solvers generalize poorly to TSPs larger than training size.
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