On Learning Paradigms for the Travelling Salesman Problem

Chaitanya K. Joshi¹, Thomas Laurent², and Xavier Bresson¹

¹ Nanyang Technological University, Singapore
² Loyola Marymount University, LA, USA

Correspondence: chaitanya.joshi@ntu.edu.sg

Paper + Code

Contributions

End-to-end learning for TSP

We unify recent ideas in learning for Combinatorial Problems through a generic end-to-end pipeline.

Zero-shot generalization

We design controlled experiments to study the impact of architecture and learning paradigms on solving TSP instances larger than those seen in training (when training on fixed sizes).

Studying the end-to-end pipeline for TSP

- Generalization, esp. to larger sizes, is difficult.
- **Sparse graphs** lead to faster learning.
- Modern GNNs do not have **implicit scaleinvariance**, *i.e.*, cannot generalize

zero-shot.

- Inductive bias: AR decoding generalizes better than NAR.
- Step-by-step AR is slower than NAR.
- Search/sampling is a **trade-off** between performance and inference time.

- SL overfits to specific graph sizes.
- Comparatively, RL **generalizes** better.

GNN-based solvers generalize poorly to TSPs larger than training size.

Prediction heatmaps

Visualizing probability to be on TSP tour for each edge before performing graph search:

Visualizing poor generalization

Related Work

- 1. Vinyals, Fortunato, Jaitly. Pointer networks. NeurIPS, 2015.
- 2. Bello, Pham, Le, Norouzi, Bengio. Neural combinatorial optimization with RL. ICLR, 2017.
- 3. Nowak, Villar, Bandeira, Bruna. A note on learning algorithms for quadratic assignment. arXiv, 2017.
- Khalil, Dai, Zhang, Dilkina, Song. Learning combinatorial optimization algorithms over graphs. NeurIPS, 2017.
- 5. Deudon, Cournut, Lacoste, Adulyasak, Rousseau. Learning heuristics for the TSP by policy gradient. CPAIOR, 2018
- Kool, van Hoof, Welling. Attention, learn to solve routing problems! ICLR, 2019.

What is needed for zero-shot generalization?